
Preprint

DEAS: DETACHED VALUE LEARNING WITH
ACTION SEQUENCE FOR SCALABLE OFFLINE RL

Changyeon Kim1∗ Haeone Lee1 Younggyo Seo2 Kimin Lee1† Yuke Zhu3,4†
1KAIST 2UC Berkeley 3The University of Texas at Austin 4NVIDIA

ABSTRACT

Offline reinforcement learning (RL) presents an attractive paradigm for train-
ing intelligent agents without expensive online interactions. However, current ap-
proaches still struggle with complex, long-horizon sequential decision making. In
this work, we introduce DEtached value learning with Action Sequence (DEAS),
a simple yet effective offline RL framework that leverages action sequences for
value learning. These temporally extended actions provide richer information than
single-step actions and can be interpreted through the options framework via semi-
Markov decision process Q-learning, enabling reduction of the effective planning
horizon by considering longer sequences at once. However, directly adopting such
sequences in actor-critic algorithms introduces excessive value overestimation,
which we address through detached value learning that steers value estimates
toward in-distribution actions that achieve high return in the offline dataset. We
demonstrate that DEAS consistently outperforms baselines on complex, long-
horizon tasks from OGBench and can be applied to enhance the performance
of large-scale Vision-Language-Action models that predict action sequences, sig-
nificantly boosting performance in both RoboCasa Kitchen simulation tasks and
real-world manipulation tasks.

1 INTRODUCTION

Offline reinforcement learning (RL) (Lange et al., 2012; Levine et al., 2020) enables learning from
static datasets without incurring online data collection risks, while circumventing the need for ex-
pensive expert demonstrations. However, existing methods primarily focus on short-horizon tasks
with dense rewards (Yu et al., 2020; Fu et al., 2020; Gulcehre et al., 2020; Mandlekar et al., 2021)
and struggle to scale to complex long-horizon scenarios. Recent attempts using large-scale architec-
tures (Kumar et al., 2023a;b; Chebotar et al., 2023; Springenberg et al., 2024) show promise, but
their effectiveness on complex tasks remains unexplored.

To address the need for long-horizon evaluation, recent work (Park et al., 2025a;b) has proposed
challenging benchmarks for complex offline RL and demonstrated that reducing the effective plan-
ning horizon (i.e., shortening the time span over which the agent must plan) in both value and policy
learning via n-step TD updates with high n values and hierarchical policies is essential. However,
these approaches rely on goal-conditioned RL with explicit expert-provided goals, which are often
unavailable in practice. For instance, high n values in n-step TD updates introduce increased bias
and bootstrap error in standard RL without explicit goal information (Tsitsiklis & Van Roy, 1996;
Kearns & Singh, 2000; Sutton & Barto, 2018).

These limitations underscore the need for alternative approaches to horizon reduction (reducing the
planning horizon) that work without explicit goal conditioning. One promising direction is leverag-
ing action sequences, which have shown success in behavior cloning (Pomerleau, 1988) for captur-
ing noisy, temporally-relevant distributions in expert demonstrations (Chi et al., 2023; Zhao et al.,
2023). However, existing attempts to use action sequences for RL remain insufficient for achieving
robust horizon reduction. Q-chunking (Li et al., 2025b) has explored the use of action sequences for
RL, demonstrating their potential for temporally consistent exploration. However, introducing action
sequences to standard actor-critic frameworks causes severe value overestimation (Seo & Abbeel,
2025) due to actors maximizing over potentially erroneous critic estimates with widely spanned

∗Work done while visiting The University of Texas at Austin. Project page: https://changyeon.site/deas
†Equal advising.

1

https://changyeon.site/deas

Preprint

Previous Methods

DEAS (Ours)

Value

Target
Critic

Critic

Policy

⚠
⚠

Value

Target
Critic

Critic

Figure 1: Overview. DEAS is an offline RL framework that learns from action sequences instead of
single actions. Unlike previous methods that couple actor-critic training, our key insight is to train
the critic separately from the policy (detached value learning) using action sequences, which enables
stable learning while avoiding value overestimation. We further enhance stability by combining
distributional RL objectives and using dual discount factors, which leads to additional improvement.

action spaces. This problem is exacerbated in offline RL where distribution shift creates extrapola-
tion errors (Kumar et al., 2019; Fujimoto et al., 2019; Kumar et al., 2020). While CQN-AS (Seo
& Abbeel, 2025) proposes a value-only approach to avoid this issue, it introduces discretization er-
rors that limit performance in complex tasks and cannot leverage expressive policy classes (Wang
et al., 2023; Hansen-Estruch et al., 2023; Park et al., 2025c). For this reason, our research aims
to develop methods that can leverage action sequences for horizon reduction while avoiding value
overestimation and maintaining compatibility with expressive policy architectures.

Our approach We present DEtached value learning with Action Sequence (DEAS), an offline RL
framework that leverages action sequences for scalable value learning in complex tasks. Our method
treats consecutive action timesteps as inputs to the value function, implementing the simplest form
of the options framework (Sutton et al., 1999; Stolle & Precup, 2002). This design provides prin-
cipled horizon reduction analogous to n-step TD updates with temporally extended actions, while
action sequences offer richer information than single-step actions without requiring explicit goal
conditioning. To address the value overestimation challenges inherent in learning value functions
with action sequences in offline RL settings, we employ detached value learning (Kostrikov et al.,
2022) that decouples critic training from the actor, biasing value estimates toward high-return ac-
tions present in the offline dataset. This method is appealing as it can be applied to any expressive
policy architectures including large-scale Vision-Language-Action models (VLAs) without the haz-
ard of value overestimation. Additionally, we propose to incorporate distributional RL (Farebrother
et al., 2024) in value learning to mitigate instability from accumulated bias in multi-step returns.

We validate DEAS through comprehensive experiments on challenging long-horizon tasks from
OGBench (Park et al., 2025a), where standard offline RL methods struggle to achieve meaningful
success rates. Our method consistently outperforms all baselines, demonstrating its effectiveness
on complex tasks. Additionally, we show that DEAS can be used to improve the performance of
VLAs (Bjorck et al., 2025) in hard tasks from RoboCasa Kitchen (Nasiriany et al., 2024) and real-
world manipulation tasks, which significantly improves performance compared to policies trained
solely on expert demonstrations. These results demonstrate DEAS’s practical applicability and po-
tential for scaling offline RL to real-world scenarios.

Contributions We highlight the key contributions of our paper below:
• We present DEAS: DEtached value learning with Action Sequence, a simple yet effective of-

fline RL method that leverages action sequences for training critics and employs detached value
learning with classification loss for stable training.

• We demonstrate that DEAS significantly outperforms baselines on complex, long-horizon tasks
across 30 diverse scenarios in OGBench (Park et al., 2025a).

2

Preprint

• We demonstrate that DEAS can enhance the performance of large-scale VLAs, achieving su-
perior results on complex tasks from RoboCasa Kitchen (Nasiriany et al., 2024) and real-world
manipulation tasks compared to policies trained solely on expert demonstrations.

2 RELATED WORK

Offline reinforcement learning Offline RL focuses on learning policies from fixed datasets with-
out further environment interaction (Levine et al., 2020). The primary challenge lies in the distri-
butional shift between the behavior policy and the learned policy, which can result in value over-
estimation and suboptimal performance. Previous work has proposed various approaches including
weighted regression (Peng et al., 2019; Nair et al., 2020; Wang et al., 2020), conservative regu-
larization (Kumar et al., 2020), behavioral regularization (Fujimoto et al., 2019; Fujimoto & Gu,
2021; Tarasov et al., 2023; Park et al., 2025c), and in-sample distribution maximization (Kostrikov
et al., 2022; Xu et al., 2023; Garg et al., 2023). Our method builds upon in-sample distribution max-
imization approaches, particularly IQL (Kostrikov et al., 2022), extending them to handle action
sequences while maintaining stability by removing the critic update based on the actor’s output.
Furthermore, our method has the advantage of being adaptable to any policy extraction method for
the final policy, making it more flexible and practical.

BC/RL with action sequence Adopting action sequence has been actively investigated in both im-
itation learning and RL. Behavior cloning advances show that predicting action sequences captures
temporal dependencies from expert demonstrations that single-step actions miss (Chi et al., 2023;
Zhao et al., 2023; Black et al., 2025; Bjorck et al., 2025; Intelligence et al., 2025). Several works
have introduced action sequences into RL (Li et al., 2024; Tian et al., 2025), with Q-Chunking (Li
et al., 2025b) demonstrating incorporation into actor-critic frameworks in offline-to-online RL with-
out policy class constraints. However, this approach faces fundamental challenges: expanded action
spaces increase value overestimation risk, particularly in offline settings with limited data cover-
age (Kumar et al., 2019), yet this issue remains unaddressed. CQN-AS (Seo & Abbeel, 2025) cir-
cumvents this by removing the actor entirely, but introduces accumulating discretization errors that
severely limit performance in complex tasks and prevent use of expressive policy classes (Wang
et al., 2023; Park et al., 2025c). Our approach uniquely combines both paradigms: we leverage hori-
zon reduction from action sequences while addressing value overestimation through detached value
learning, enabling stable training with any policy architecture.

3 PRELIMINARIES

Problem formulation We consider a Markov Decision Process (MDP) (Sutton & Barto, 2018)
M = (S,A, p, R, ρ0, γ), where S is the state space, A is the action space, R(s, a) : S × A → R
is the reward function, p(s′|s, a) : S × A → ∆(S) is the transition function, ρ0 is the initial state
distribution, and γ is the discount factor. In this paper, we focus on offline reinforcement learning,
where we have access only to a static dataset D = {τ i}Ni=0 containing N trajectories of fixed length
H , where each trajectory τ i = (s0, a0, r0, . . . , sH , aH , rH) represents a sequence of states, actions,
and rewards. The dataset is collected using a data collection policy πD : S → ∆(A), which may be
unknown or suboptimal. Unlike online RL, we cannot interact with the environment during training.
The objective is to learn a policy π : S → ∆(A) that maximizes the expected sum of discounted
rewards Eρ0,π,p [

∑∞
t=0 γ

tR(st, at)] using only this fixed dataset.

Options framework To formalize the idea for flexible temporal abstractions in RL and MDP, a
Markovian option ω ∈ Ω is defined as a triplet (Iω, πω, βω). Iω ⊆ S is the initiation set, πω is
an intra-option policy, and βω : S → [0, 1] is the termination function. For any MDP M and
any Markovian option ωM defined on M, a decision process that follows only the option can be
configured as an Semi-Markovian Decision Process (SMDP), which guarantees the existence of a
set of optimal policies, denoted as Π∗

ω . For more detailed explanations and proofs, please refer to
Sutton et al. (1999).

Implicit Q Learning (IQL) (Kostrikov et al., 2022) Instead of regularizing the critic with the
actor output, IQL approximates the optimal critic to be maximized only in the region of action
distributions present in the offline dataset with an in-sample expectile regression. Given a param-
eterized critic Q(st, at; θ), target critic Q(st, at; θ̄), and value network V (st;ψ), the objective for

3

Preprint

value learning is defined as:

LV (ψ) = E(st,at)∼D
[
Lτ
2(Q̄(st, at; θ̄)− V (st;ψ))

]
LQ(θ) = E(st,at)∼D

[
(R(s, a) + γV (st+1;ψ)−Q(st, at; θ))

2
]

where Lτ
2(u) = |τ −1(u < 0)|u2 is the expectile loss with expectile parameter τ ∈ [0, 1]. By using

τ > 0.5, Equation 3 penalizes the overestimated value in out-of-distribution actions, letting V and
Q to be only approximated in the region of in-distribution actions.

4 METHOD

We propose DEtached value learning with Action Sequence (DEAS), an offline RL method that
models action sequences for scalable learning. Our approach consists of two key components: (1) a
critic function Q(st, ot; θ) that estimates expected returns for the option (consisting of H-step ac-
tion sequence) ot := at:t+H−1 from state st under the data collection policy πD, and (2) a flexible
policy update mechanism applicable to any policy π(at:t+H−1; st, ϕ) that outputs H-step action se-
quences. Section 4.1 describes how we integrate action sequences into SMDP Q-learning for horizon
reduction, while Section 4.2 introduces how DEAS enables stable training through detached value
learning, distributional RL, and dual discount factors. We provide pseudocode in Algorithm 1 and
implementation details in Appendix A.

4.1 OPTIONS FRAMEWORK FOR ACTION SEQUENCE RL

Complex tasks require coordinated action sequences where each action’s effectiveness depends on
its context within the sequence. For instance, in OGBench puzzle or cube tasks, success depends
on planning through multiple intermediate steps and maintaining consistent actions over extended
periods. These temporal dependencies and hidden sub-tasks are not captured by current state repre-
sentations, making it challenging for agents to learn effective policies. The challenge becomes even
greater in goal-free settings, where agents must discover these sequential patterns from offline data
without explicit goal instructions.

To address these challenges, we propose modeling consecutive action sequences as single deci-
sion units within the options framework. We treat each H-step action sequence ot := at:t+H−1 =
{at, at+1, . . . , at+H−1} as an option, which naturally induces a SMDP (Bradtke & Duff, 1994;
Feinberg, 1994; Sutton et al., 1999; Baykal-Gürsoy & Gürsoy, 2010) that guarantees the existence
of an optimal policy. Specifically, the option ω∗ is defined as:

ω∗ = (Iω∗ , πω∗ , βω∗) = (S, π(ot | st), β∗(st, k))

β∗(st, k) =

{
1 if k = H

0 otherwise

where k denotes the number of steps executed within the current option. This leads to a Q-learning
update rule that extends standard Q-learning (Bradtke & Duff, 1994):

Q(st, ot; θ)←
H−1∑
k=0

γk1R(st, at+k) + γH2 max
o′∈O

Q(st+H , o
′; θ)

where γ1 and γ2 are discount factors for intra-option and inter-option transitions, respectively. This
formulation aggregates rewards over H steps and propagates value estimates across temporally ex-
tended transitions, achieving horizon reduction similar to n-step TD learning (Park et al., 2025b).

4.2 DEAS: DETACHED VALUE LEARNING WITH ACTION SEQUENCE

Detached value learning for handling action sequence Action sequences introduce challenges
for value function approximation, as the expanded action space makes it harder for the critic to esti-
mate Q-values accurately. Meanwhile, the actor can exploit regions where the critic makes prediction
errors, leading to value overestimation and unstable learning (Seo & Abbeel, 2025). To address this,
we adopt detached value learning (Kostrikov et al., 2022; Xu et al., 2023; Garg et al., 2023) that

4

Preprint

Algorithm 1 DEAS
Required: Offline dataset D, Support range for return vmin, vmax, number of binsm, discount factor γ1, γ2
Initialize parameters ψ, θ, θ̄, ϕ
while not converged do

Sample batch {(st, at:t+H−1, Rt:t+H−1, st+H)} from D
Compute the discounted return of intra option as R̂t:t+H =

∑H−1
k=0 γ

k
1R(st, at+k)

Compute Q̄(s, o; θ̄) and V (s;ψ) using equation (1)
▷ Update V Network
Update V (s;ψ) to minimize Equation (2) with Q̄(s, o; θ̄) and V (s;ψ)

▷ Update Q Network
Update Q(s, o; θ) to minimize Equation (3)

▷ Update Actor Network
Update π(s;ϕ) with any type of policy extraction algorithms (e.g., BoN, DPG, AWR, etc.)

Update θ̄ = (1− β) · θ̄ + β · θ
return π(s)

decouples actor and critic training, introducing a critic Q(st, ot; θ) and a value V (st;ψ) networks
with the following losses following IQL (Kostrikov et al., 2022):

LV (ψ) = E(st,ot)∼D
[
Lτ
2(Q̄(st, ot; θ̄)− V (st;ψ))

]
LQ(θ) = E(st,ot)∼D

[
(R̂t:t+H−1 + γH2 V (st+H ;ψ)−Q(st, ot; θ))

2
]
,

where R̂t:t+H−1 =
∑H−1

k=0 γ1
kR(st, at+k) is the discounted return for the action sequence. This

approach steers the critic toward high-return actions in the offline dataset without the potential of
exploiting critic approximation errors, preventing value overestimation and enabling stable value
learning even with longer action sequences.

Distributional RL for enhanced stability Even with detached value learning, the cumulative
reward term R̂t:t+H−1 could introduce significant variance when H is large. To enhance stability,
we extend our framework with distributional RL (Bellemare et al., 2017; Farebrother et al., 2024),
modeling both critic and value networks as categorical distributions over fixed support [vmin,vmax]
discretized into m bins:

Q(s, o; θ) = E [Z(s, o; θ)] Z(s, o; θ) =

m∑
i=1

p̂i(s, o; θ) · δzi p̂i(s, o; θ) =
eli(s,o;θ)∑m
i=1 e

li(s,o;θ)
, (1)

where V (s;ψ) is computed similarly, by conditioning only on the state s. To address scale differ-
ences between regression and classification objectives, we maintain IQL’s weighting scheme but
replace regression with classification-based learning:

LV (ψ) = E(st,ot)∼D

[
αt ·

m∑
i=1

p̂i(st;ψ) log p̂i(st, ot; θ̄)

]

αt =

{
τ if Q̄(st, ot; θ̄) ≥ V (st;ψ)

1− τ otherwise,

(2)

LQ(θ) = E(st,at:t+H−1,st+H)∼D

[
m∑
i=1

pi(st;ψ) log p̂i(st, at:t+H−1; θ̂)

]
. (3)

For target probabilities pi, we adopt the truncated normal distribution with mean as Bellman target
(T̂ V)(s, at:t+H−1) =

∑H−1
k=0 γ

k
1 rt+k + γH2 V (st+H ;ψ) and standard deviation σ = 0.75 · (vmax −

vmin/m), inspired by Farebrother et al. (2024).

Dual discount factors To further enhance stability and expressiveness in value estimation, we
employ two separate discount factors: γ1 for intra-option (within action sequence) rewards and γ2
for inter-option (across action sequences) rewards. This dual-discounting scheme enables the value

5

Preprint

Figure 2: Simulation task examples. We study DEAS on 30 different tasks from OGBench (Park
et al., 2025a) and 4 challenging manipulation tasks from RoboCasa Kitchen (Nasiriany et al., 2024).

function to appropriately weigh immediate and future returns, mitigating issues such as value ex-
plosion or collapse that can arise from improper scaling of returns. In our experiments, we observe
that decreasing the intra-option discount factor γ1 and increasing the inter-option discount factor γ2
leads to more stable training, and is critical for stable training, especially when the action sequence
becomes longer (see Section 5.3 for the supporting results).

Compatible policy methods For obtaining final policy π(s;ϕ), our framework is compatible
with a variety of policy extraction strategies (Park et al., 2024), including weighted behavior
cloning (Peng et al., 2019), deterministic policy gradient (DPG) (Fujimoto & Gu, 2021), best-of-
N sampling (Chen et al., 2023), and flow-matching approaches (Park et al., 2025c). Since value
function training does not require querying the policy, it can be performed independently, and the
policy can be updated separately. To demonstrate this, we illustrate the effectiveness of our method
using various policy extraction methods in our experiments.

5 EXPERIMENTS

We first validate the effectiveness of DEAS through extensive experiments on various com-
plex tasks in OGBench (Park et al., 2025a). Additionally, to prove that DEAS can be naturally
plugged into large-scale VLAs for practical applications, we evaluate DEAS by fine-tuning GR00T
N1.5 (NVIDIA, 2025) using offline RL methods on 4 hard tasks from RoboCasa Kitchen (Nasiriany
et al., 2024) and also conduct real-world experiments with Franka Emika Research 3 Robot Arm.
See Figure 2 and Figure 4 for task examples used in our experiments.

5.1 OGBENCH EXPERIMENTS

Setup We evaluate on 6 manipulation environments from OGBench (Park et al., 2025a), each
with 5 subtasks. We use datasets ranging from 1M to 100M transitions based on task difficulty.
While OGBench is originally designed for offline goal-conditioned RL, we use its single-task vari-
ants (‘− singletask′) for reward-maximizing offline RL. For fair comparison, all methods use
identical MLP architectures for actor networks and adopt the same policy extraction approach as
FQL (Park et al., 2025c), except for CQN-AS, which uses value function networks as the actor itself
through discretization. Action sequence length H is set to 8 for scene and puzzle tasks, and 4 for
cube tasks, with n = H is used for n-step FQL. More details about the experimental setup can be
found in Appendix A.1.

Baselines We compare against FQL (Park et al., 2025c), a state-of-the-art offline RL method
using one-step distillation between flow matching models with different denoising steps, and n-
step FQL (Sutton & Barto, 2018), which extends FQL with n-step TD updates for horizon reduc-
tion (Park et al., 2025b). While increasing n increases bias in standard offline RL, DEAS explic-
itly models action sequences while maintaining horizon reduction benefits. We also consider Q-
Chunking (QC) (Li et al., 2025b), which uses action chunking for actor-critic training while keeping
the interaction between actor and critic, while DEAS uses detached value learning. For fair compar-
ison with ours, we extensively tune QC-FQL hyperparameters to achieve higher performance than
the original paper. Lastly, CQN-AS (Seo & Abbeel, 2025), a value-based RL method with action
sequence utilizing multi-level critics with iterative discretization, is included as a baseline.

Quantitative results As shown in Table 1, DEAS consistently achieves the best performance
across all 6 task categories with various dataset sizes. Comparing FQL and N-step FQL, we ob-
serve that simply increasing the n-step mostly leads to performance degradation due to bias in
standard offline RL, while our detached value learning approach enables stable training with ac-
tion sequences. Notably, DEAS matches or outperforms QC-FQL across all tasks, demonstrating

6

Preprint

Table 1: Offline RL results in 6 task categories from OGBench (Park et al., 2025a). We report the
success rate (%) and 95% stratified bootstrap confidence interval over 4 runs. Bold indicates the
values at or above 95% of the best performance. Please refer to Table 8 for the full results.

Task Category #Data FQL N-step FQL QC-FQL CQN-AS DEAS
scene-play-singletask (5 tasks)

1M
50 ±3 36 ±2 73 ±2 1 ±1 76 ±2

cube-double-play-singletask (5 tasks) 14 ±2 4 ±2 41 ±3 2 ±1 48 ±2

puzzle-3x3-play-singletask (5 tasks) 44 ±3 36 ±3 62 ±7 0 ±0 91 ±3

cube-triple-play-singletask (5 tasks) 10M 10 ±3 23 ±2 83 ±4 0 ±0 82 ±5

puzzle-4x4-play-singletask (5 tasks) 32 ±4 19 ±5 69 ±8 0 ±0 82 ±6

cube-quadruple-play-singletask (5 tasks) 100M 17 ±8 36 ±10 45 ±7 0 ±0 64 ±8

1 5 10
Dataset Size (M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

cube-double
DEAS (Ours)
QC-FQL
NFQL
FQL

1 5 10
Dataset Size (M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

cube triple
DEAS (Ours)
QC-FQL
NFQL
FQL

10 50 100
Dataset Size (M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

cube quadruple
DEAS (Ours)
QC-FQL
NFQL
FQL

Figure 3: Agent performance across varying dataset sizes on three representative OGBench (Park
et al., 2025a) tasks, evaluated by success rate (%). Solid lines indicate the mean, while shaded areas
denote the stratified bootstrap confidence intervals over 4 independent runs.

the effectiveness of our stable value learning in addressing offline RL instability. The method shows
particularly strong performance on tasks requiring long-horizon reasoning like puzzle and the most
challenging tasks (i.e., cube− quadruple), where the benefits of using action sequences are most
pronounced. CQN-AS shows significantly lower performance, likely due to its direct application of
strong BC regularization on the value function in the presence of predominantly suboptimal data,
along with cumulative errors from iterative discretizations that reduce action precision.

Scaling analysis To further validate the scalability of DEAS, we conduct a scaling analysis on
three representative OGBench tasks with varying dataset sizes. As shown in Figure 3, DEAS consis-
tently outperforms all baselines across all dataset sizes, achieving the highest success rates in every
environment. The method demonstrates robust scaling across different dataset sizes, maintaining
consistent performance gains even with larger datasets. This superior performance validates our ap-
proach of explicitly modeling action sequences while effectively leveraging suboptimal data through
our detached value learning and stable multi-step training.

5.2 VLA EXPERIMENTS

To validate the practical applicability of DEAS, we demonstrate its effectiveness with large-scale
VLAs (Black et al., 2025; Bjorck et al., 2025; NVIDIA, 2025). These models, trained on internet-
scale diverse datasets with billion-scale parameters, predict much longer action sequences and are
widely used in robotics applications. However, deploying these models typically requires fine-tuning
on task-specific data, which often necessitates collecting expensive expert demonstrations. We de-
sign our experiments to validate whether DEAS can improve VLA performance by effectively uti-
lizing suboptimal demonstrations alongside limited expert data, potentially reducing the required
amount of costly expert demonstrations. See Appendix A.2 for more details.

5.2.1 ROBOCASA KITCHEN EXPERIMENTS

Setup We employ GR00T N1.5 (NVIDIA, 2025) as the backbone VLA. First, we fine-tune the
VLA using 100 expert demonstrations from all 24 RoboCasa Kitchen tasks to verify that we achieve
performance similar to the original GR00T N1 (Bjorck et al., 2025). From these tasks, we select
4 tasks with the lowest success rates in their respective categories for our offline IL/RL experi-
ments. We then collect 300 rollouts for each task from the resulting policy and apply various offline
IL/RL methods. For RL methods, we fine-tune the base policy using behavior cloning on both ex-
pert demonstrations and the rollout dataset and use the model as an actor for training critic functions
when necessary. For policy extraction, we adopt best-of-N sampling (Chen et al., 2023; Nakamoto

7

Preprint

Table 2: RoboCasa Kitchen evaluation results. We fine-tune GR00T N1.5 (NVIDIA, 2025) on
24 RoboCasa Kitchen tasks using 100 expert demonstrations per task. For 4 selected tasks, we col-
lect 300 rollouts and apply offline IL/RL algorithms. Success rates (%) on 50 episodes, aggregated
with 3 seeds. PnPC2M denotes ‘PnPCounterToMicrowave’ and PnPM2C denotes ‘PnPMicrowaveTo-
Counter’. Bold and underline indicate best and runner-up results, respectively.

∗ Result from Bjorck et al. (2025) † Reproduced performance

Models CoffeeSetupMug PnPC2M PnPM2C TurnOffStove Avg.

Base models
GR00T N1∗ 2.0 0.0 0.0 15.7 4.4
GR00T N1.5† 4.7 21.3 7.3 14.7 12.0

Imitation learning
+ Filtered BC 14.7 25.3 14.7 19.3 18.5

Offline RL
+ IQL 23.3 30.0 14.7 12.7 20.2
+ QC 16.0 28.7 14.7 10.7 17.5
+ DEAS (Ours) 28.7 36.0 18.0 18.0 25.2

et al., 2024), where we sample multiple outputs from the policy and select the action sequence with
the highest Q-value. We set H = 16 for all methods, matching GR00T N1.5’s action chunk size.

Baselines We compare against several baselines across both imitation learning and reinforcement
learning paradigms. For imitation learning, we consider Filtered BC, which fine-tunes the base pol-
icy using both expert demonstrations and successful episodes from the rollout data (Oh et al., 2018).
For reinforcement learning, we evaluate IQL, a value-based method that operates on single actions
without requiring policy outputs. For determining action sequence in IQL, we use the very first ac-
tion in the sequence for value estimation. Lastly, we consider QC, which employs action chunking
for critic training but relies on predicted action sequences from VLA for the critic update.

Results As shown in Table 2, DEAS achieves the highest success rates in 3 out of 4 tasks, with the
remaining task also showing improved performance compared to the base model. While filtered BC
improves performance with simple approaches, but our approach exhibits additional performance
gains by effectively utilizing suboptimal data. While single-step IQL also demonstrates effective-
ness, it shows smaller performance gains across all tasks compared to our approach, due to its lack
of understanding of action sequences. QC shows limited improvement compared to BC-based ap-
proaches, highlighting the advantage of our detached value learning with action sequences.

5.2.2 REAL-WORLD EXPERIMENTS

Setup We further investigate the effectiveness of DEAS in real-world tasks using Franka Emika
Research 3 Robot Arm. Inspired by RoboCasa Kitchen, we design pick-and-place tasks from the
countertop to the bottom cabinet, with three different objects: peach, milka, and hichew (see Fig-
ure 4). For each task, we collect 5 demonstrations, fine-tune GR00T N1.5, collect 25 rollouts, and
apply various offline IL/RL methods. We evaluate using 20 rollouts per task from 5 different initial
points and use the same baselines as in the RoboCasa Kitchen experiments. Success rates are cal-
culated based on partial success scoring (0-1 scale) that considers subtask completion, with detailed
evaluation methodology provided in Section A.2.2.

Results In Table 3, DEAS achieves the highest success rates across all three pick-and-place tasks
compared to baselines. The method shows consistent improvements, particularly on challenging
objects like milka (a deformable object) where other approaches struggle. Notably, QC shows de-
graded performance compared to the base model, likely due to its instability when using action
sequences with relatively small datasets, while our method shows stable improvement even with
limited data. These results demonstrate that our detached value learning approach can be effectively
applied to real-world robotic tasks and remains stable regardless of the dataset size.

5.3 ABLATION STUDIES AND ANALYSES

We investigate the effect of hyperparameters and various components of DEAS by running experi-
ments on OGBench puzzle-4x4 task.

8

Preprint

Figure 4: Real-world tasks. We conduct
pick-and-place tasks from the countertop
to the bottom cabinet with peach, milka,
and hichew.

Table 3: Real-world evaluation results. We report the
partial success rate (%, over 20 trials per task) on 3 tasks
from 5 initial points. Bold and underline indicate best
and runner-up results, respectively.

Models peach milka hichew Avg.

Base model
GR00T N1.5 62.0 45.0 85.0 64.0

Imitation learning
+ Filtered BC 76.3 25.0 92.5 64.6

Offline RL
+ IQL 82.5 37.5 78.8 66.3
+ QC 58.8 15.0 45.0 39.6
+ DEAS (Ours) 86.3 53.8 95.0 78.4

H Actor SR
1 512 × 4 21 ±3

2 512 × 4 25 ±5

4 512 × 4 75 ±8

8 512 × 4 88 ±4

16 512 × 4 51 ±4

16 1024 × 4 84 ±4

(a) Action sequence

Critic Value SR
256 × 4 256 × 4 69 ±7

512 × 4 256 × 4 88 ±4

1024 × 4 256 × 4 91 ±4

512 × 4 512 × 4 50 ±4

(b) Critic size

IQL HLG SR
✗ ✓ 75 ±5

✓ ✗ 63 ±6

✓ ✓ 88 ±4

(c) Objectives

γ1 γ2 SR
0.8 0.999 87 ±4

0.9 0.999 88 ±4

0.99 0.999 81 ±5

0.999 0.999 80 ±8

(d) γ1 and γ2

Table 4: Ablation studies. We investigate the effect of (a) action sequence length H , (b) critic and
value model size, (c) training objectives, and (d) separate discount factors γ1 and γ2 for intra-option
and inter-option rewards. SR denotes success rate (%) and default settings are highlighted in gray .
Bold indicates values at or above 95% of the best performance.

Effect of action sequence length Table 4a investigates the impact of action sequence length on
performance. When using single-step or two-step action (H = 1, 2), DEAS fails to achieve meaning-
ful performance, confirming the necessity of action sequences for long-horizon tasks. Performance
improves with longer sequences, but when the sequence length becomes longer than 8, it requires
proportionally larger actor networks to handle the increased action dimensions, suggesting a trade-
off between sequence length and computational efficiency.

Effect of network size Table 4b analyzes the sensitivity to network sizes. For the critic network,
we observe that increasing capacity initially improves performance by better approximating the
value function. For the value function, we find that the network needs sufficient capacity to cap-
ture the complexity of action sequence values, but excessive capacity without proper regularization
causes instability in value estimation, leading to performance degradation.

Effect of training objective In Table 4c, we compare different training objectives for value estima-
tion. We found that using only distributional RL (HLG) (Farebrother et al., 2024) or only standard
regression (IQL) shows limited performance. However, combining detached value learning with
distributional estimation significantly improves results, suggesting both components are crucial for
stable training with action sequences.

Effect of dual discount factors Lastly, we examine the effect of dual discount factors on learning
dynamics in Table 4d. Proper tuning of γ1 (the discount factor for action sequences) is essential for
performance, as it controls the temporal horizon for value estimation within sequences. In this paper,
we use γ1 = 0.9 for all experiments.

6 CONCLUSION

We present DEAS, a simple yet effective offline RL method that leverages action sequences for
scalable learning in complex tasks. By modeling temporally extended actions through the options
framework, DEAS achieves principled horizon reduction via SMDP Q-learning while addressing
value overestimation through detached value learning. Our experiments demonstrate consistent im-
provements over baselines on challenging OGBench tasks and successful application to large-scale
VLAs, showing the practical potential for scaling offline RL to real-world scenarios.

9

Preprint

REPRODUCIBILITY STATEMENT

We provide full hyperparameter and implementation details in Section 5 and Section A. In addi-
tion, to further facilitate the reproduction, we release the open-sourced implementation through the
project website.

ACKNOWLEDGMENTS

CY thanks Jaehyun Nam, Juyong Lee, and anonymous reviewers for providing helpful feedback
and suggestions for improving our paper. CY also thanks Angeline S. Kim for the assistance in
improving the expression and the visualization of the paper.

REFERENCES

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. {OPAL}: Offline
primitive discovery for accelerating offline reinforcement learning. In International Conference
on Learning Representations, 2021.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In AAAI Conference
on Artificial Intelligence, 2017.

Melike Baykal-Gürsoy and K Gürsoy. Semi-markov decision processes. Wiley Encyclopedia of
Operations Research and Management Sciences, 2010.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, 2017.

Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan, Yu Fang,
Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model for gener-
alist humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow
model for general robot control. In Robotics: Science and Systems, 2025.

Steven Bradtke and Michael Duff. Reinforcement learning methods for continuous-time markov
decision problems. In Conference on Neural Information Processing Systems, 1994.

Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Irpan, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, et al. Q-transformer: Scalable offline reinforcement learning
via autoregressive q-functions. In Conference on Robot Learning, 2023.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. In International Conference on Learning Repre-
sentations, 2023.

Yuhui Chen, Shuai Tian, Shugao Liu, Yingting Zhou, Haoran Li, and Dongbin Zhao. Con-
rft: A reinforced fine-tuning method for vla models via consistency policy. arXiv preprint
arXiv:2502.05450, 2025a.

Zengjue Chen, Runliang Niu, He Kong, and Qi Wang. Tgrpo: Fine-tuning vision-language-action
model via trajectory-wise group relative policy optimization. arXiv preprint arXiv:2506.08440,
2025b.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. International
Journal of Robotics Research, 2023.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taiga, Yevgen Chebotar, Ted Xiao, Alex Ir-
pan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, and Rishabh Agarwal.
Stop regressing: Training value functions via classification for scalable deep RL. In International
Conference on Machine Learning, 2024.

10

https://changyeon.site/deas

Preprint

Eugene A Feinberg. Constrained semi-markov decision processes with average rewards. Zeitschrift
für Operations Research, 1994.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
Conference on Neural Information Processing Systems, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, 2019.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent RL
without entropy. In International Conference on Learning Representations, 2023.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gómez, Konrad Zolna,
Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz, Cosmin Paduraru, et al. Rl unplugged:
A suite of benchmarks for offline reinforcement learning. Conference on Neural Information
Processing Systems, 2020.

Yanjiang Guo, Jianke Zhang, Xiaoyu Chen, Xiang Ji, Yen-Jen Wang, Yucheng Hu, and Jianyu Chen.
Improving vision-language-action model with online reinforcement learning. arXiv preprint
arXiv:2501.16664, 2025.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Dongchi Huang, Zhirui Fang, Tianle Zhang, Yihang Li, Lin Zhao, and Chunhe Xia. Co-rft: Effi-
cient fine-tuning of vision-language-action models through chunked offline reinforcement learn-
ing. arXiv preprint arXiv:2508.02219, 2025.

Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Manuel Y. Galliker, Dibya Ghosh,
Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin
LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z.
Ren, Lucy Xiaoyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner,
Quan Vuong, Homer Walke, Anna Walling, Haohuan Wang, Lili Yu, and Ury Zhilinsky. π0.5: a
vision-language-action model with open-world generalization. arXiv preprint arXiv:2504.16054,
2025.

Michael J Kearns and Satinder Singh. Bias-variance error bounds for temporal difference updates.
In Conference on Learning Theory, 2000.

Diederik P Kingma. Adam: A method for stochastic optimization. In International Conference on
Learning Representations, 2015.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations, 2022.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In Conference
on Neural Information Processing Systems, 2016.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Conference on Neural Information Processing
Systems, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Conference on Neural Information Processing Systems, 2020.

11

Preprint

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline q-
learning on diverse multi-task data both scales and generalizes. In International Conference on
Learning Representations, 2023a.

Aviral Kumar, Anikait Singh, Frederik Ebert, Mitsuhiko Nakamoto, Yanlai Yang, Chelsea Finn, and
Sergey Levine. Pre-training for robots: Offline rl enables learning new tasks from a handful of
trials. In Robotics: Science and Systems, 2023b.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-
ment learning: State-of-the-art, 2012.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Ge Li, Dong Tian, Hongyi Zhou, Xinkai Jiang, Rudolf Lioutikov, and Gerhard Neumann. Top-erl:
Transformer-based off-policy episodic reinforcement learning. arXiv preprint arXiv:2410.09536,
2024.

Haozhan Li, Yuxin Zuo, Jiale Yu, Yuhao Zhang, Zhaohui Yang, Kaiyan Zhang, Xuekai Zhu, Yuchen
Zhang, Tianxing Chen, Ganqu Cui, et al. Simplevla-rl: Scaling vla training via reinforcement
learning. arXiv preprint arXiv:2509.09674, 2025a.

Qiyang Li, Zhiyuan Zhou, and Sergey Levine. Reinforcement learning with action chunking. arXiv
preprint arXiv:2507.07969, 2025b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n. What matters in learning from offline
human demonstrations for robot manipulation. arXiv preprint arXiv:2108.03298, 2021.

Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Iretiayo Akinola, Yashraj Narang, Linxi Fan,
Yuke Zhu, and Dieter Fox. Mimicgen: A data generation system for scalable robot learning using
human demonstrations. In Conference on Robot Learning, 2023.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. In Conference on Neural Information Processing Systems, 2018.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. In Conference on Neural Information Processing Systems, 2023.

Mitsuhiko Nakamoto, Oier Mees, Aviral Kumar, and Sergey Levine. Steering your generalists:
Improving robotic foundation models via value guidance. In Conference on Robot Learning,
2024.

Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for generalist
robots. In Robotics: Science and Systems, 2024.

Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Miłoś, and Marek Cygan. Big-
ger, regularized, optimistic: scaling for compute and sample efficient continuous control. In Con-
ference on Neural Information Processing Systems, 2024.

NVIDIA. Gr00t n1.5: An improved open foundation model for generalist humanoid robots. https:
//research.nvidia.com/labs/gear/gr00t-n1_5/, June 2025. Accessed: 2025-09-09.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. In International
Conference on Machine Learning, 2018.

12

https://research.nvidia.com/labs/gear/gr00t-n1_5/
https://research.nvidia.com/labs/gear/gr00t-n1_5/

Preprint

Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main
bottleneck in offline rl? In Conference on Neural Information Processing Systems, 2024.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. OGBench: Benchmarking
offline goal-conditioned RL. In International Conference on Learning Representations, 2025a.

Seohong Park, Kevin Frans, Deepinder Mann, Benjamin Eysenbach, Aviral Kumar, and Sergey
Levine. Horizon reduction makes rl scalable. In Conference on Neural Information Process-
ing Systems, 2025b.

Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. In International Conference on
Machine Learning, 2025c.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Conference on
Neural Information Processing Systems, 1988.

Younggyo Seo and Pieter Abbeel. Coarse-to-fine q-network with action sequence for data-efficient
robot learning. In Conference on Neural Information Processing Systems, 2025.

Jost Tobias Springenberg, Abbas Abdolmaleki, Jingwei Zhang, Oliver Groth, Michael Bloesch,
Thomas Lampe, Philemon Brakel, Sarah Maria Elisabeth Bechtle, Steven Kapturowski, Roland
Hafner, Nicolas Heess, and Martin Riedmiller. Offline actor-critic reinforcement learning scales
to large models. In International Conference on Machine Learning, 2024.

Martin Stolle and Doina Precup. Learning options in reinforcement learning. In International
Symposium on abstraction, reformulation, and approximation, 2002.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 1999.

Shuhan Tan, Kairan Dou, Yue Zhao, and Philipp Krähenbühl. Ript-vla: Interactive post-training for
vision-language-action models. arXiv preprint arXiv:2505.17016, 2025.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the min-
imalist approach to offline reinforcement learning. In Conference on Neural Information Process-
ing Systems, 2023.

Dong Tian, Ge Li, Hongyi Zhou, Onur Celik, and Gerhard Neumann. Chunking the critic: A
transformer-based soft actor-critic with n-step returns. arXiv preprint arXiv:2503.03660, 2025.

John Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learning with function
approximation. In Conference on Neural Information Processing Systems, 1996.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International Conference on Machine Learning, 2017.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In International Conference on Learning Representa-
tions, 2023.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. In Conference on Neural Information Processing Systems, 2020.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and Xi-
anyuan Zhan. Offline RL with no OOD actions: In-sample learning via implicit value regulariza-
tion. In International Conference on Learning Representations, 2023.

13

Preprint

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, 2020.

Hongyin Zhang, Zifeng Zhuang, Han Zhao, Pengxiang Ding, Hongchao Lu, and Donglin Wang.
Reinbot: Amplifying robot visual-language manipulation with reinforcement learning. arXiv
preprint arXiv:2505.07395, 2025.

Zijian Zhang, Kaiyuan Zheng, Zhaorun Chen, Joel Jang, Yi Li, Siwei Han, Chaoqi Wang, Mingyu
Ding, Dieter Fox, and Huaxiu Yao. Grape: Generalizing robot policy via preference alignment.
arXiv preprint arXiv:2411.19309, 2024.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. In Robotics: Science and Systems, 2023.

14

Preprint

A IMPLEMENTATION AND TRAINING DETAILS

A.1 OGBENCH EXPERIMENTS

Tasks We evaluate our method on 6 UR5 Robot Arm manipulation environments from OG-
Bench (Park et al., 2025a), each with 5 subtasks. All tasks are state-based, and goal-free setup.
For each task, the observation space consists of the proprioceptive state of the UR5 Robot Arm,
and low-dim state vector informing the target object state and position. The action space consists
of the cartesian position of UR5 robot arm, gripper yaw, and gripper open/close. For substituting
goal-conditioned environment to standard function, we use the simple semi-sparse reward function,
which is defined as the negative number of uncompleted subtasks in the current state, following Park
et al. (2025a). For all tasks, the maximum episode length is set to 1000.

Implementation details We implement our method on top of the open-source implementation of
FQL (Park et al., 2025c) 1. Unless otherwise mentioned, we largely follow the training/evaluation
setup and network architecture from Park et al. (2025c) and Park et al. (2025b). For training value
network, we use the smaller size network compared to critic network for all experiments, which
shows the best performance, and we use the doubled size of network for the critic network. For cube
experiments, we use BRO (Nauman et al., 2024) for additional regularization between relatively
small range of returns in value function training. For selecting vmin and vmax for distributional RL,
we use two procedures: 1) data-centric: compute return distribution from the dataset and select 1%
and 99% quantiles with 20% padding, and 2) universal: compute theoretical bounds using reward
range [rmin, rmax], horizon L, option length H , and discount factors γ1, γ2. For SMDP with K =
L/H options, the theoretical bounds are:

vmin = rmin
1− γH2
1− γ2

1− γK1
1− γ1

(4)

vmax = rmax
1− γH2
1− γ2

1− γK1
1− γ1

(5)

where γ1 and γ2 denote option-level and action-level discount factors, respectively.

Training and evaluation For the training dataset, we use the open-sourced 1M/100M play
dataset released by Park et al. (2025a) 2, where the dataset is collected by open-loop, non-Markovian
scripted policies with temporally correlated noise. As 100M dataset consists of 100 separate files
with 1M transitions for each, we use the first 10 files sorted by name for 10M dataset. We train
our method and baselines for 1M (1M data) / 2.5M (10M/100M data) gradient steps. For selecting
BC coefficient α for policy extraction, we first normalize the Q loss as in Fujimoto & Gu (2021)
and sweep the value from {0.1, 0.3, 1, 3, 10} and choose the best one for each task and baseline,
except cube− double, where we follow the hyperparameter used in Li et al. (2025b). For eval-
uation, we report the average success rates across the last three evaluation epochs (800K, 900K,
1M for 1M dataset, 2.3M, 2.4M, 2.5M for 10M/100M dataset) following Park et al. (2025c) and
Park et al. (2025b). For checking additional hyperparameters used in our experiments, please refer
to Section A.3.

Baselines For reporting results from FQL and n-step FQL, we use the implementation from Park
et al. (2025c). For Q-Chunking, we re-implement the code from Li et al. (2025b) 3 in our codebase.
We found that simply increasing discount factor γ leads to significant performance improvement
for Q-Chunking, so we use the discount factor to be same with γ2 for value function training. For
implementing CQN-AS, we use the original implementation released by the authors from Seo &
Abbeel (2025) 4 and integrate OGBench related codes on top of the codebase. Originally, CQN-AS
is designed to apply auxiliary BC loss only on expert demonstrations, but considering the dataset
distribution of OGBench tasks with nearly no success rollouts, we modify the BC loss on the subop-
timal data as well (Fujimoto & Gu, 2021; Park et al., 2025c; 2024), where no significant difference

1https://github.com/seohongpark/fql
2https://github.com/seohongpark/ogbench
3https://github.com/ColinQiyangLi/qc
4https://github.com/younggyoseo/CQN-AS

15

https://github.com/seohongpark/fql
https://github.com/seohongpark/ogbench
https://github.com/ColinQiyangLi/qc
https://github.com/younggyoseo/CQN-AS

Preprint

with the original implementation. As the reward scale for OGBench is highly different according to
the domain, we normalize the reward scale to be in [−1, 0], and use vmin and vmax as −200 and 0,
respectively. For levels and bins, we use 5 (level) and 9 (bins) for all experiments.

Computing hardware For all OGBench experiments, we use a single NVIDIA RTX 3090 GPU
with 24GB VRAM and it takes about 2 hours for training the small model (used for 1M dataset) and
about 8 hours for training the large model (used for 10M/100M dataset).

A.2 VLA EXPERIMENTS

Computing hardware For all VLA experiments, we use NVIDIA A100 80GB GPUs. Fine-tuning
GR00T N1.5 takes about 4 hours for 100 expert demonstrations and successful rollouts. For training
DEAS and baselines, it takes about 10 hours with the same data, as we use a larger batch size.

VLA fine-tuning We implement our method and baselines on top of the open-source implementa-
tion of GR00T N1.5 (NVIDIA, 2025) 5. As our code is based on an earlier version of GR00T N1.5,
we conduct experiments without introducing future tokens to the action expert modules. For fine-
tuning GR00T N1.5, we use a batch size of 32 and train for 30K (RoboCasa Kitchen) / 10K (Real
Robot) steps using AdamW (Loshchilov & Hutter, 2019) optimizer with learning rate 1× 10−4 and
cosine annealing schedule.

A.2.1 ROBOCASA KITCHEN EXPERIMENTS

Task RoboCasa Kitchen (Nasiriany et al., 2024) is a simulation environment with a mobile
manipulator attached to a Franka Panda robot arm in household kitchen environments. Among
24 atomic tasks provided by the environment, we select 4 challenging tasks (CoffeeSetupMug,
PnPMicrowaveToCounter, PnPMicrowaveToMicrowave, PnPMicrowaveToStove) that require
relatively long-horizon and delicate manipulation with small grasping part, which is demonstrated
by the low success rate of the base model. For perception, camera images from 3 different view-
points (left front, right front, wrist), proprioceptive states including position/velocities of joint/base,
and natural language instructions, are provided. For reward function, we use the pre-defined success
detector in the environment, and use the sparse reward function where the reward is 1 if the task is
completed, and 0 otherwise.

Implementation details As an input for the value function, we first use the proprioceptive states
from the robot, including joint position/angle, base position/orientation for the mobile manipulator.
To provide information on target objects to the value function, we utilize the encoded representation
of three different camera views and task instructions from the VLM backbone. For the value/critic
network architecture, we use the same hyperparameters as those used for the 100M dataset exper-
iments. For optimizing value and critic function, we use the expectile parameter τ as 0.7, and use
γ1 = 0.9, γ2 = 0.99, universal support type for distributional RL, for all experiments. For select-
ing action candidates with the value function, we first sample N = 10 candidates from the policy.
For selecting final actions, we try either 1) greedy sampling with highest Q-value or 2) inspired by
Nakamoto et al. (2024), sampling the action from a categorical distribution obtained by temperature
controlled softmax over Q-values: at ∼ Softmax(Q(st,a1)

β , . . . , Q(st,aN)
β) with temperature β = 1

and report the best result for each task.

Training and evaluation For expert demonstrations, we randomly sample 100 expert demonstra-
tions using the publicly available dataset generated by MimicGen (Mandlekar et al., 2023). For
training DEAS and baselines, we use a batch size of 64 and train for 30K steps using Adam opti-
mizer with a learning rate of 3 × 10−4. For collecting rollouts, we use randomized environments
using the object instance set A. For each task, we evaluate the model performance across 50 trials
on five distinct evaluation scenes with 3 different evaluation seeds, totaling 150 rollouts. To test
generalization capabilities, we evaluate the policy only on unseen object instances.

5https://github.com/NVIDIA/Isaac-GR00T

16

https://github.com/NVIDIA/Isaac-GR00T

Preprint

Figure 5: Real-robot platform.

Figure 6: Initialization points used for pick-and-place tasks.

A.2.2 REAL ROBOT EXPERIMENTS

Hardware platform We use Franka Research 3, a 7-DoF robotic arm, for our experiments. For
visual perception, we utilize the dual camera with Intel RealSense D435i: a camera attached to the
column next to the robot base to provide a global view, and a wrist-mounted camera for a close-
range view. Teleoperated demonstrations are collected using an Oculus Quest 2, and we log time-
synchronized RGB images, joint states, and gripper width for data collection. Demonstrations are
recorded at 15 Hz. See Figure 5 for visual examples.

Task We evaluate the model performance on pick-and-place tasks from the countertop to the bot-
tom cabinet, with three different objects: peach, milka, and hichew. Each object has different
properties: peach is a rigid object with a relatively larger size that is easy to occlude, milka is a
deformable object with a relatively smaller size that is easy to deform, and hichew is a hard object
requiring precise grasping due to its small width. For collecting demonstrations, we use different
initialization points (center, top, bottom, left, right) and collect one demonstration for each position
(see Figure 6 for the initialization points used in our experiments). For accurate value function es-
timation, we manually label the reward function for each task. Specifically, we split the task into 4
stages: 1) moving to the countertop, 2) picking up the object, 3) moving to the target position, and
4) placing the object. For each stage, we label the reward function as 1 if the task is completed, and
0 otherwise, and we set the reward function as the negative number of uncompleted stages following
Park et al. (2025a).

Implementation details Unless otherwise mentioned, we follow the same implementation details
as in the RoboCasa Kitchen experiments. For selecting final actions, we use N = 50 candidates
from the policy and use the same procedure for selecting the final action as in the RoboCasa Kitchen
experiments.

17

Preprint

A.3 HYPERPARAMETERS

We list the hyperparameters used in our OGBench experiments in Tables 5 and 6. For the BC coef-
ficient α used for policy extraction, please refer to Table 7.

Table 5: DEAS hyperparameters for OGBench experiments.

Hyperparameter Value
Gradient steps 1M (1M dataset), 2.5M (10M/100M dataset)
Optimizer Adam (Kingma, 2015)
Learning rate 0.0003
Batch size 256 (1M dataset), 1024 (10M/100M dataset)
Actor MLP size [512, 512, 512, 512] (1M dataset)

[1024, 1024, 1024, 1024] (10M/100M dataset)
Critic MLP size [256, 256, 256, 256] (1M dataset)

[512, 512, 512, 512] (10M/100M dataset)
Value MLP size [128, 128, 128, 128] (1M dataset)

[256, 256, 256, 256] (10M/100M dataset)
Nonlinearity GELU (Hendrycks & Gimpel, 2016)
Layer normalization True
Target network update rate 0.005
Discount factor γ1 0.9
Discount factor γ2 0.995 (cube), 0.999 (scene, puzzle)
HL-Gaussian - Atoms 101
HL-Gaussian - σ 0.75
HL-Gaussian - Support range type data-centric (cube), universal (scene, puzzle)
Flow steps 10
Critic ensemble size 2
Action sequence length H 4 (cube), 8 (scene, puzzle)
Expectile κ (DEAS) 0.9 (1M dataset), 0.95 (10M/100M dataset)
Double Q aggregation min(Q1, Q2)
Policy extraction hyperparameters Table 7

Table 6: Baseline hyperparameters for OGBench experiments.

Hyperparameter Value
Critic MLP size [512, 512, 512, 512] (1M dataset)

[1024, 1024, 1024, 1024] (10M/100M dataset)
Discount factor γ (FQL, n-step FQL) 0.99
Discount factor γ (QC-FQL) 0.995 (cube), 0.999 (puzzle)
Horizon reduction factor n 4 (cube), 8 (puzzle)
Policy extraction hyperparameters Table 7

Levels (CQN-AS) 5
Bins (CQN-AS) 9
C51 - vmin,vmax (CQN-AS) -200, 0

Table 7: Policy extraction hyperparameters for OGBench experiments. Note that we apply Q-
Normalization (Fujimoto & Gu, 2021) for actor loss, except cube-double tasks.

Task FQL α n-step FQL α QC-FQL α DEAS α

scene 3 1 3 3
cube-double 300 100 300 300.0
puzzle-3x3 3 1 1 3
cube-triple 3 1 1 1
puzzle-4x4 3 1 1 3
cube-quadruple 3 1 1 1

18

Preprint

B EXTENDED RELATED WORK

Hierarchical RL and Options Framework Some Hierarchical RL works seek to address the
challenges of long-horizon and sparse-reward tasks by reducing the effective horizon through learn-
ing value functions that consume multi-step actions (Kulkarni et al., 2016; Vezhnevets et al., 2017;
Nachum et al., 2018; Ajay et al., 2021), usually combined with bi-level architectures. Among them,
Options framework (Sutton et al., 1999; Stolle & Precup, 2002; Bacon et al., 2017) introduces for-
malization of higher-level actions that persist for multiple time steps with variable initiation/termi-
nation conditions, effectively reducing the planning horizon and facilitating more efficient learning.
Our approach leverages the options perspective by treating action sequences as primitive options, en-
abling horizon reduction and improved value propagation without task-specific knowledge, explicit
goal conditioning, or manual sub-task specification.

Reinforcement learning with VLAs Recent efforts have applied RL to VLA training (Zhang
et al., 2024; Chen et al., 2025a; Zhang et al., 2025; Guo et al., 2025; Tan et al., 2025; Chen et al.,
2025b; Li et al., 2025a), but most focus on on-policy online RL, which requires expensive interac-
tions and cannot reuse transitions. A key limitation is that existing methods use single-step value
functions Q(s, a) for value learning, despite modern VLAs being designed to predict action se-
quences (Black et al., 2025; Bjorck et al., 2025; Intelligence et al., 2025). This mismatch between
single-step value learning and multi-step action prediction limits the effectiveness of RL with VLAs.
The most related work is CO-RFT (Huang et al., 2025), which applies chunked offline RL to VLA
training, but differs from our approach in three key aspects: (1) CO-RFT uses actor-critic meth-
ods (Nakamoto et al., 2023) with single-step value functions while DEAS uses detached value
learning with action sequences, (2) CO-RFT relies on human teleoperated expert demonstrations
while we use small expert sets with large suboptimal rollouts, and (3) CO-RFT requires sophisti-
cated transformer architectures while DEAS achieves improvements with simple MLP networks.

C LIMITATIONS AND FUTURE WORK

While DEAS demonstrates significant improvements over existing offline RL methods, several lim-
itations and opportunities for future research remain. First, our current approach uses fixed action
sequence lengths across different tasks, but the optimal sequence length varies significantly depend-
ing on task complexity. Future work should investigate adaptive mechanisms that can dynamically
adjust action sequence lengths based on task requirements, potentially through adopting hierarchical
policies (Kulkarni et al., 2016; Vezhnevets et al., 2017; Nachum et al., 2018). Second, while DEAS
shows promising results on individual tasks, scaling to large-scale unified value functions remains
a critical challenge for real-world deployment. DEAS currently trains reward models on 3-4 tasks
simultaneously, but practical applications require learning from hundreds or thousands of diverse
tasks. Future research should focus on developing scalable architectures and training procedures
that can handle massive multi-task datasets while maintaining sample efficiency and avoiding catas-
trophic forgetting. Third, our method relies on distributional RL with fixed support ranges (vmin,
vmax) and discretization parameters, which can significantly impact performance. The sensitivity to
these hyperparameters limits the method’s robustness across different domains and reward scales.
Future work should develop more robust frameworks that can automatically adapt to different reward
distributions or provide principled ways to set these parameters.

D USE OF LARGE LANGUAGE MODELS

We acknowledge the use of large language models (LLMs) in preparing this manuscript. LLMs were
employed solely to refine writing quality, including grammar correction, vocabulary suggestions,
and typographical checks. All substantive ideas, analyses, and conclusions in this paper are entirely
the work of the authors

19

Preprint

E FULL EXPERIMENTAL RESULTS

We include the full experimental results in OGBench experiments in Table 8.

Table 8: Full offline RL Results in 30 OGBench tasks. ∗ indicates the default task in each environ-
ment. We report the success rate (%) and 95% stratified bootstrap confidence interval over 4 runs.

Task #Data FQL N-step FQL QC-FQL CQN-AS DEAS
scene-play-singletask-task1-v0 100 ±0 100 ±0 99 ±0 2 ±1 99 ±1

scene-play-singletask-task2-v0 50 ±7 4 ±3 99 ±1 1 ±1 97 ±1

scene-play-singletask-task3-v0 1M 95 ±2 78 ±5 64 ±8 0 ±0 75 ±6

scene-play-singletask-task4-v0∗ 3 ±2 0 ±0 68 ±1 0 ±0 65 ±5

scene-play-singletask-task5-v0 0 ±0 0 ±0 35 ±7 0 ±0 45 ±6

cube-double-play-singletask-task1-v0 46 ±4 17 ±3 68 ±4 7 ±1 76 ±3

cube-double-play-singletask-task2-v0∗ 10 ±2 1 ±0 47 ±8 1 ±1 51 ±8

cube-double-play-singletask-task3-v0 1M 9 ±2 1 ±1 40±6 0 ±1 47 ±4

cube-double-play-singletask-task4-v0 1 ±1 0 ±0 8±1 1 ±1 8 ±1

cube-double-play-singletask-task5-v0 2 ±1 3 ±1 44±3 0 ±0 57 ±3

puzzle-3x3-play-singletask-task1-v0 100 ±0 89 ±3 97 ±1 1 ±2 100 ±0

puzzle-3x3-play-singletask-task2-v0 19 ±4 40 ±10 81 ±12 0 ±0 94 ±5

puzzle-3x3-play-singletask-task3-v0 1M 15 ±2 14 ±3 50 ±11 0 ±0 91 ±3

puzzle-3x3-play-singletask-task4-v0∗ 35 ±4 23 ±3 31 ±4 0 ±0 91 ±3

puzzle-3x3-play-singletask-task5-v0 47 ±4 13 ±3 50 ±11 0 ±0 96 ±2

cube-triple-play-singletask-task1-v0 31 ±14 17 ±5 100 ±0 0 ±0 98 ±1

cube-triple-play-singletask-task2-v0∗ 9 ±3 91 ±4 92 ±2 0 ±0 95 ±2

cube-triple-play-singletask-task3-v0 10M 12 ±5 0 ±0 92 ±2 0 ±0 88 ±3

cube-triple-play-singletask-task4-v0 0 ±1 0 ±0 59 ±7 0 ±0 45 ±7

cube-triple-play-singletask-task5-v0 2 ±1 0 ±0 74 ±4 0 ±0 87 ±5

puzzle-4x4-play-singletask-task1-v0 54 ±4 28 ±5 66 ±17 0 ±0 92 ±8

puzzle-4x4-play-singletask-task2-v0 24 ±3 2 ±1 80 ±16 0 ±0 42 ±7

puzzle-4x4-play-singletask-task3-v0 10M 36 ±4 42 ±7 69 ±22 0 ±0 99 ±1

puzzle-4x4-play-singletask-task4-v0∗ 22 ±2 28 ±3 70 ±17 0 ±0 88 ±4

puzzle-4x4-play-singletask-task5-v0 22 ±4 3±2 61±19 0 ±0 89 ±6

cube-quadruple-play-singletask-task1-v0 79 ±6 70 ±9 79 ±7 0 ±0 92 ±5

cube-quadruple-play-singletask-task2-v0∗ 0 ±0 97 ±2 63 ±7 0 ±0 100 ±0

cube-quadruple-play-singletask-task3-v0 100M 6±3 1 ±1 33 ±7 0 ±0 62 ±9

cube-quadruple-play-singletask-task4-v0 0 ±0 13 ±5 38 ±7 0 ±0 31 ±7

cube-quadruple-play-singletask-task5-v0 0 ±0 0 ±0 12 ±6 0 ±0 35 ±10

20

	Introduction
	Related Work
	Preliminaries
	Method
	Options framework for action sequence RL
	DEAS: DEtached value learning with Action Sequence

	Experiments
	OGBench Experiments
	VLA Experiments
	RoboCasa Kitchen Experiments
	Real-world Experiments

	Ablation Studies and Analyses

	Conclusion
	Implementation and Training Details
	OGBench Experiments
	VLA Experiments
	RoboCasa Kitchen Experiments
	Real Robot Experiments

	Hyperparameters

	Extended Related Work
	Limitations and Future Work
	Use of Large Language Models
	Full Experimental Results

